
Exercises Module 4  

Corrections 
Exercise 4.1 

 
In this problem we expect the concentration cA to be a function of both r and θ, but not 𝜙𝜙 as 
the geometry is rotationally symmetric around 𝜙𝜙. Therefore, we seek 𝑐𝑐𝐴𝐴(𝑟𝑟, 𝜃𝜃) over the domain 
of the hemisphere.  

The differential equation used will be Eq. 4.16 since we have no reaction and the continuum 
is solid. Therefore: 

𝜕𝜕𝜕𝜕𝐴𝐴 

𝜕𝜕𝜕𝜕
= 𝒟𝒟A𝐵𝐵𝛁𝛁2c𝐴𝐴 

In spherical coordinates :  

𝜕𝜕𝜕𝜕𝐴𝐴 

𝜕𝜕𝜕𝜕
= 𝒟𝒟A𝐵𝐵 �

1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟2

𝜕𝜕c𝐴𝐴
𝜕𝜕𝜕𝜕

� +
1

𝑟𝑟2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃
𝜕𝜕c𝐴𝐴
𝜕𝜕𝜕𝜕

� +
1

𝑟𝑟2 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃
𝜕𝜕2c𝐴𝐴
𝜕𝜕𝜙𝜙2 � 

Since 𝑐𝑐𝐴𝐴(𝑟𝑟,𝜃𝜃) ≠ 𝑓𝑓(𝜙𝜙) we can simplify: 

𝜕𝜕𝜕𝜕𝐴𝐴 

𝜕𝜕𝜕𝜕
= 𝒟𝒟A𝐵𝐵 �

1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟2

𝜕𝜕c𝐴𝐴
𝜕𝜕𝜕𝜕

� +
1

𝑟𝑟2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃
𝜕𝜕c𝐴𝐴
𝜕𝜕𝜕𝜕

�� 

To solve this equation, we need 4 boundary conditions (2 for r and 2 for θ), and one initial 
condition. 

Initial condition: for 𝑡𝑡 = 0 c𝐴𝐴 = 0 over the entire domain of the hemisphere 

boundary conditions for t > 0: 

at 𝑟𝑟 =  𝑅𝑅, c𝐴𝐴 = c𝐴𝐴𝐴𝐴  (surface of hemisphere) 

at 𝜃𝜃 =  𝜋𝜋
2

, c𝐴𝐴 = c𝐴𝐴𝐴𝐴 (bottom surface) 

at 𝑟𝑟 =  0, c𝐴𝐴 = c𝐴𝐴𝐴𝐴  (this is single point at the origin, which is on the surface) 



The last boundary condition is a bit tricky. We have to look at the symmetry in the system. We 
have an axis of symmetry when 𝜃𝜃 =  0 . The flux of A in the direction perpendicular to this 
direction must be 0 at this axis, due to the symmetry (continuity) condition. Since at 𝜃𝜃 =  0, 
the theta direction, 𝜽𝜽� (or 𝑒𝑒𝜃𝜃����⃗ ) is indeed perpendicular to the axis of symmetry, which is exactly 
what we need. Then we need only to write: 

𝑗𝑗𝐴𝐴,𝜃𝜃�𝜃𝜃=0 = 0 

Applying Fick’s law of diffusion in 3D and taking only the theta component: 

−𝒟𝒟𝐴𝐴𝐴𝐴 �
1
𝑟𝑟

 
𝜕𝜕𝑐𝑐𝐴𝐴
𝜕𝜕𝜕𝜕

��
𝜃𝜃=0

= 0 

 

This simplifies to: 

𝜕𝜕𝑐𝑐𝐴𝐴
𝜕𝜕𝜕𝜕

�
𝜃𝜃=0

= 0 

 

Note:  at 𝜃𝜃 =  0, 𝒋𝒋𝑨𝑨 ≠ 0. This is because the r-component of the flux of A will not equal zero 

(i.e. 𝑗𝑗𝐴𝐴,𝑟𝑟�𝜃𝜃=0 ≠ 0, or rather 𝜕𝜕𝑐𝑐𝐴𝐴
𝜕𝜕𝜕𝜕
�
𝜃𝜃=0

≠ 0).   

 

Exercise 4.2 

 

The system is isotropic in θ and 𝜙𝜙, and therefore the temperature will only spatially depend 
on the radius r: 

 𝑇𝑇 = 𝑇𝑇(𝑟𝑟, 𝑡𝑡) 

There are two different continuous media in the system through which the temperature will 
be transported: the bullet and the gel. Therefore, we need two differential equations to 
describe it. Starting with equation 4.8, applying spherical coordinates, and simplifying for 𝑇𝑇 =
𝑇𝑇(𝑟𝑟, 𝑡𝑡) we have: 

Inside the bullet: 

𝜕𝜕𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏
𝜕𝜕𝜕𝜕

=
𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟2

𝜕𝜕𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏
𝜕𝜕𝜕𝜕

� 

Inside the gel: 

𝜕𝜕𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔
𝜕𝜕𝜕𝜕

=
𝛼𝛼𝑔𝑔𝑔𝑔𝑔𝑔
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟2

𝜕𝜕𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔
𝜕𝜕𝜕𝜕

� 

The initial conditions are: 



𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏(𝑟𝑟 ≤ 𝑅𝑅, 𝑡𝑡 < 0) = 𝑇𝑇𝑖𝑖 

𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟 ≥ 𝑅𝑅, 𝑡𝑡 < 0) = 𝑇𝑇∞ 

 

We need four boundary conditions (two for each equation): 

𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔 (𝑟𝑟 → ∞ , 𝑡𝑡) = 𝑇𝑇∞ 

𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏 (𝑟𝑟 = 𝑅𝑅, 𝑡𝑡) = 𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔(𝑟𝑟 = 𝑅𝑅, 𝑡𝑡) 

𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏(𝑟𝑟 = 𝑅𝑅, 𝑡𝑡) = 𝑞𝑞𝑔𝑔𝑔𝑔𝑔𝑔 (𝑟𝑟 = 𝑅𝑅, 𝑡𝑡) ⟺ 𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏
𝜕𝜕𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏
𝜕𝜕𝜕𝜕

�
𝑟𝑟=𝑅𝑅,𝑡𝑡

= 𝑘𝑘𝑔𝑔𝑔𝑔𝑔𝑔
𝜕𝜕𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔
𝜕𝜕𝜕𝜕

�
𝑟𝑟=𝑅𝑅,𝑡𝑡

  

𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏 (𝑟𝑟 = 0, 𝑡𝑡) = 0 ⟺
𝜕𝜕𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏
𝜕𝜕𝜕𝜕

�
𝑟𝑟=0,𝑡𝑡

= 0 

 

 

Exercise 4.3 

 

Under the stokes flow approximation we can assume that flow is only in the 𝜃𝜃 direction. 
Then 𝑣𝑣𝑟𝑟 = 𝑣𝑣𝑧𝑧 = 0 and we seek 𝑣𝑣𝜃𝜃(𝑟𝑟, 𝑧𝑧). 

Flow is shear driven and pressure and gravity are ignored. Our simplified momentum 
balance in cylindrical coordinates becomes: 

0 = 𝜇𝜇 �
𝜕𝜕
𝜕𝜕𝜕𝜕
�

1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕

 (𝑟𝑟𝑣𝑣𝜃𝜃)� +
𝜕𝜕2𝑣𝑣𝜃𝜃
𝜕𝜕𝑧𝑧2

� 

The boundary conditions are (choosing the origin of the coordinate system at the center of 
the disk’s bottom, at the interface with the fluid, and the positive z direction toward the 
ceramic shaft): 

𝑣𝑣𝜃𝜃(𝑟𝑟, 𝑧𝑧 = 0) = Ω𝑟𝑟 

 𝑣𝑣𝜃𝜃(𝑟𝑟, 𝑧𝑧 = 𝜁𝜁) = 0 

𝑣𝑣𝜃𝜃(𝑟𝑟 = 0, 𝑧𝑧) = 0 

𝜏𝜏𝑟𝑟𝑟𝑟(𝑟𝑟 = 𝑅𝑅, 𝑧𝑧) = 0 →  −μ�𝑟𝑟 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑣𝑣𝜃𝜃
𝑟𝑟
���

𝑟𝑟=𝑅𝑅
= 0 → 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑣𝑣𝜃𝜃
𝑟𝑟
��
𝑟𝑟=𝑅𝑅

= 0        (free surface) 

To solve this we need to make a reasonable guess for 𝑣𝑣𝜃𝜃(𝑟𝑟, 𝑧𝑧). Given the first B.C: above it is 
reasonable to guess 𝑣𝑣𝜃𝜃(𝑟𝑟, 𝑧𝑧) = 𝑟𝑟 𝑓𝑓(𝑧𝑧). 

Plugging this into the differential balance and simplifying (few steps omitted) we get: 



0 =
𝑑𝑑2𝑓𝑓
𝑑𝑑𝑧𝑧2

 

Simplifying the B.C.s we get  

𝑓𝑓(𝑧𝑧 = 0) = Ω 

𝑓𝑓(𝑧𝑧 = 𝜁𝜁) = 0 

Integrating the differential balance and applying the B.C.s, and plugging back into 𝑣𝑣𝜃𝜃   gives: 

𝑣𝑣𝜃𝜃(𝑟𝑟, 𝑧𝑧) =  Ω𝑟𝑟 �1 −
𝑧𝑧
𝜁𝜁
� 

b) the torque is given by: 

𝑇𝑇𝑧𝑧 = �𝜏𝜏𝑧𝑧𝑧𝑧|𝑧𝑧=0𝑟𝑟 𝑑𝑑𝑑𝑑
 

𝐴𝐴

 

Plugging in for dA and the stress we get 

𝑇𝑇𝑧𝑧 = � � �−𝜇𝜇
𝜕𝜕𝑣𝑣𝜃𝜃
𝜕𝜕𝜕𝜕

��
𝑧𝑧=0

𝑟𝑟2 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
 𝑅𝑅

0

2𝜋𝜋

0

 

And then 

𝑇𝑇𝑧𝑧 =
2𝜋𝜋𝜋𝜋Ω
𝜁𝜁

� 𝑟𝑟3 𝑑𝑑𝑑𝑑 
 𝑅𝑅

0

 

Finally giving:  

𝑇𝑇𝑧𝑧 =
𝜋𝜋𝜋𝜋ΩR4

2𝜁𝜁
 

(c) We want to find  𝑄𝑄𝑧𝑧 = ∫ 𝑞𝑞𝑧𝑧|𝑧𝑧=0
 
𝐴𝐴  𝑑𝑑𝑑𝑑, thus first we look for 𝑇𝑇(𝑟𝑟, 𝑧𝑧) in the liquid. Starting with 

eq. 4.6:  

𝜌𝜌𝑐𝑐𝑝𝑝
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= (𝑘𝑘𝛁𝛁𝟐𝟐𝑇𝑇) + 𝜇𝜇Φ𝑣𝑣 

Steady state:  

𝜌𝜌𝑐𝑐𝑝𝑝(𝒗𝒗 ∙ 𝜵𝜵𝑇𝑇) = (𝑘𝑘𝛁𝛁𝟐𝟐𝑇𝑇) + 𝜇𝜇Φ𝑣𝑣 

Expand in cylindrical coordinates: 

 

𝜌𝜌𝑐𝑐𝑝𝑝 �[𝑣𝑣𝑟𝑟 𝑣𝑣𝜃𝜃 𝑣𝑣𝑧𝑧] ∙ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

1
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�� = 𝑘𝑘 �

1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� +

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑧𝑧2

� + 𝜇𝜇Φ𝑣𝑣 

Considering that 𝑇𝑇 ≠ 𝑓𝑓(𝜃𝜃) and that 𝑣𝑣𝑟𝑟 = 𝑣𝑣𝑧𝑧 = 0 we have 



 

0 = 𝑘𝑘 �
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� +

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑧𝑧2

� + 𝜇𝜇Φ𝑣𝑣 

Further ignoring conduction in the r direction and expanding the term Φ𝑣𝑣 : 

0 = 𝑘𝑘 �
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑧𝑧2

� + 𝜇𝜇 ��𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑣𝑣𝜃𝜃
𝑟𝑟
��

2

+ �
𝜕𝜕𝑣𝑣𝜃𝜃
𝜕𝜕𝜕𝜕

�
2

� 

Substituting 𝑣𝑣𝜃𝜃(𝑟𝑟, 𝑧𝑧) =  Ω𝑟𝑟 �1 − 𝑧𝑧
𝜁𝜁
� we get: 

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑧𝑧2

= −
𝜇𝜇
𝑘𝑘
�
𝑟𝑟Ω
𝜁𝜁
�
2

 

The B.C.s are : 

𝑇𝑇(𝑟𝑟, 𝑧𝑧 = 0) = T1 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑧𝑧=𝜁𝜁

= 0 

Integrating the differential equation once gives: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝜇𝜇
𝑘𝑘
�
𝑟𝑟Ω
𝜁𝜁
�
2

𝑧𝑧 + 𝑔𝑔(𝑟𝑟) 

Here we can apply the second B.C. : 

0 = −
𝜇𝜇
𝑘𝑘
�
𝑟𝑟Ω
𝜁𝜁
�
2

𝜁𝜁 + 𝑔𝑔(𝑟𝑟) 

Thus:  

𝑔𝑔(𝑟𝑟) =
𝜇𝜇
𝑘𝑘
�
𝑟𝑟Ω
𝜁𝜁
�
2

𝜁𝜁 

Or rather: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝜇𝜇
𝑘𝑘
�
𝑟𝑟Ω
𝜁𝜁
�
2

(𝜁𝜁 − 𝑧𝑧) 

Integrating again: 

𝑇𝑇 =
𝜇𝜇
𝑘𝑘
�
𝑟𝑟Ω
𝜁𝜁
�
2

�𝜁𝜁𝜁𝜁 −
𝑧𝑧2

2
� + ℎ(𝑟𝑟) 

Apply first B.C.: 

𝑇𝑇1 = ℎ(𝑟𝑟) 

Then we have our 𝑇𝑇(𝑟𝑟, 𝑧𝑧) 



𝑇𝑇 =
𝜇𝜇
𝑘𝑘
�
𝑟𝑟Ω
𝜁𝜁
�
2

�𝜁𝜁𝜁𝜁 −
𝑧𝑧2

2
� + 𝑇𝑇1 

Now we can derive 𝑞𝑞𝑧𝑧|𝑧𝑧=0 

𝑞𝑞𝑧𝑧|𝑧𝑧=0 = −𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑧𝑧=0

= −
𝜇𝜇𝑟𝑟2Ω2

𝜁𝜁
 

And finally  

 𝑄𝑄𝑧𝑧 = �𝑞𝑞𝑧𝑧|𝑧𝑧=0

 

𝐴𝐴

𝑑𝑑𝑑𝑑 = � � −
𝜇𝜇𝑟𝑟2Ω2

𝜁𝜁
𝑟𝑟 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

 𝑅𝑅

0

2𝜋𝜋

0

 

𝑄𝑄𝑧𝑧 = −
2𝜋𝜋𝜋𝜋Ω2

𝜁𝜁
� 𝑟𝑟3 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
 𝑅𝑅

0

 

𝑄𝑄𝑧𝑧 = −
𝜋𝜋𝜋𝜋Ω2R4

2𝜁𝜁
 

 

Exercise 4.4 

We consider the wall as semi-infinite space, which surface is suddenly exposed to a drop in 
temperature from 𝑇𝑇∞= 40°C to 𝑇𝑇0 = 20°𝐶𝐶. The heat profile will evolve over time with the 
following trend: 

Since the heat propagates inside a solid, we can neglect the convection in front of the 
conduction and therefore the heat differential equation becomes: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛼𝛼𝛁𝛁𝟐𝟐𝑇𝑇 

𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

= 𝜶𝜶
𝝏𝝏𝟐𝟐𝑻𝑻
𝝏𝝏𝒙𝒙𝟐𝟐

 

T 
x 

External 
wall  

 

𝑻𝑻𝟎𝟎  

𝑻𝑻∞  

𝑡𝑡 = 𝑡𝑡1 > 0 

External 
wall  

𝑻𝑻𝟎𝟎  

𝑻𝑻∞  

𝑡𝑡 = 0 

𝑻𝑻𝟎𝟎  

𝑻𝑻∞  

𝑡𝑡 = 𝑡𝑡2 > 𝑡𝑡1 

External 
wall  

 



The equation needs to be non-dimensionalized. We are dealing with the same equation than 
in section 4.7 from the lecture, where the temperature replaces the speed and the thermal 
diffusivity replaces the kinematic viscosity. The solving of the equation is therefore identical 
as long as we can convert it to the same non-dimensional form.  

We use the following non-dimensional variables: 

𝚯𝚯 =
𝐓𝐓 − 𝐓𝐓∞
𝑻𝑻𝟎𝟎 − 𝑻𝑻∞

     𝑒𝑒𝑒𝑒    𝛈𝛈 =
𝒙𝒙

√𝟒𝟒𝟒𝟒𝟒𝟒
  

Remark : In example in lecture, we had  𝑣𝑣∞ = 0 so it did not appear in the non-
dimensionalization 

The boundary conditions are: 

𝑥𝑥 = 0, 𝑇𝑇 = 𝑇𝑇0        ⇒       𝜼𝜼 = 𝟎𝟎,     𝚯𝚯 = 𝟏𝟏 

𝑥𝑥 = ∞, 𝑇𝑇 = 𝑇𝑇∞        ⇒      𝜼𝜼 = ∞,   𝚯𝚯 = 𝟎𝟎 
 
Changing variables in the equation: 

𝝏𝝏𝚯𝚯
𝛛𝛛𝛛𝛛

= 𝜶𝜶
𝝏𝝏𝟐𝟐𝚯𝚯
𝝏𝝏𝒙𝒙𝟐𝟐

 

Note that this is the same differential equation as we found for the velocity profile as in 
lecture, for any exam you can just apply the solution we know already… however here is the 
solution again (method of combination of variables): 

Then: 

𝜕𝜕Θ
∂t

=
𝜕𝜕Θ
∂η

∗
∂η
∂t

=
𝑥𝑥

√4𝛼𝛼
∗ �−

1
2
𝑡𝑡−

3
2�
𝜕𝜕Θ
∂η

= −
1
2
𝜂𝜂
𝑡𝑡
𝜕𝜕Θ
∂η

  

 

𝜕𝜕Θ
∂𝑥𝑥

=
𝜕𝜕Θ
∂η

∗
∂η
∂𝑥𝑥

=
1

√4𝛼𝛼𝛼𝛼
𝜕𝜕Θ
∂η

 

𝜕𝜕2Θ
∂𝑥𝑥2

=
𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝜕𝜕Θ
∂𝑥𝑥
� =

𝜕𝜕
𝜕𝜕𝜕𝜕

�
1

√4𝛼𝛼𝛼𝛼
𝜕𝜕Θ
∂η
� =

𝜕𝜕
𝜕𝜕𝜕𝜕

�
1

√4𝛼𝛼𝛼𝛼
𝜕𝜕Θ
∂η
� ∗

∂η
∂𝑥𝑥

=
1

4𝛼𝛼𝛼𝛼
∗
𝜕𝜕2Θ
∂η2

 

The new equation is: 

−
1
2
𝜂𝜂
𝑡𝑡
𝜕𝜕Θ
∂η

=
𝛼𝛼

4𝛼𝛼𝛼𝛼
𝜕𝜕2Θ
∂η2

 

𝝏𝝏𝟐𝟐𝚯𝚯
𝛛𝛛𝛈𝛈𝟐𝟐

+ 𝟐𝟐𝛈𝛈
𝝏𝝏𝚯𝚯
𝛛𝛛𝛛𝛛

= 𝟎𝟎  

Let’s set Γ = 𝜕𝜕Θ
∂η

.  



𝜕𝜕𝜕𝜕
∂η

+ 2𝜂𝜂𝛤𝛤 = 0 

𝜕𝜕𝜕𝜕
𝛤𝛤

= −2𝜂𝜂 ∂η 

ln(𝛤𝛤) = −𝜂𝜂2 

𝜞𝜞 = 𝑪𝑪𝟏𝟏𝒆𝒆−𝜼𝜼
𝟐𝟐 

This yields: 

𝜕𝜕Θ
∂η

= 𝐶𝐶1𝑒𝑒−𝜂𝜂
2 

Integrating Θ between 0 and η : 

Θ(η) = 𝐶𝐶1 � 𝑒𝑒−𝜂́𝜂2𝑑𝑑𝜂́𝜂
𝜂𝜂

0
+ Θ(0) 

Θ(η) = 1 + 𝐶𝐶1 � 𝑒𝑒−𝜂́𝜂2𝑑𝑑𝜂́𝜂
𝜂𝜂

0
 

On the other hand Θ(∞) = 0, therefore: 

0 = 1 + 𝐶𝐶1 � 𝑒𝑒−𝜂́𝜂2𝑑𝑑𝜂́𝜂
∞

0
 

𝐶𝐶1 = −
2
√𝜋𝜋

 

And therefore: 

Θ(η) = 1 −
2
√𝜋𝜋

� 𝑒𝑒−𝜂́𝜂2𝑑𝑑𝜂́𝜂
𝜂𝜂

0
 

𝚯𝚯(𝛈𝛈) = 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝜼𝜼  

i.e. 

𝐓𝐓 − 𝐓𝐓∞
𝑻𝑻𝟎𝟎 − 𝑻𝑻∞

=  𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 �
𝒙𝒙

√𝟒𝟒𝟒𝟒𝟒𝟒
�  

For 𝑥𝑥1 = 0.05 𝑚𝑚 and 𝑡𝑡1 = 900𝑠𝑠, 

𝜂𝜂1(𝑥𝑥1, 𝑡𝑡1) = 1.18 

Therefore 

erfc(𝜂𝜂1) = 0.095 (tabulated) 

Finally: 

𝑇𝑇(𝑥𝑥1, 𝑡𝑡1) = (𝑇𝑇0 − 𝑇𝑇∞) erfc(𝜂𝜂1) + 𝑇𝑇∞ = −20 ∗ 0.095 + 40 



𝑻𝑻(𝒙𝒙𝟏𝟏, 𝒕𝒕𝟏𝟏) = 𝟑𝟑𝟑𝟑.𝟏𝟏°𝑪𝑪 

The semi-infinite approximation is satisfying as long as the Fo < 0.2 at the center of the wall.  

Meaning that,  

𝐹𝐹𝐹𝐹 =
𝛼𝛼𝛼𝛼
𝑌𝑌2

≤ 0.2    

then 

𝒕𝒕 ≤
𝑌𝑌2 ∗ 0.2

𝜶𝜶
=

(1𝑚𝑚)2 ∗ 0.2
𝟓𝟓 ∙ 𝟏𝟏𝟏𝟏−𝟕𝟕𝒎𝒎𝟐𝟐/𝒔𝒔

= 𝟒𝟒 ∗ 𝟏𝟏𝟎𝟎𝟓𝟓𝒔𝒔 

 

The approximation is valid for any time lower than 4.6 days (this is a long time because α is 
very small and therefore the heat propagates very slowly inside the wall)  

 

 

 

Exercise 4.5 

The fluid is moving in the x direction and since 𝐿𝐿, 𝑏𝑏 ≫ ℎ, the speed will vary only in the y 
direction: 

𝑣𝑣 = 𝑣𝑣𝑥𝑥(𝑡𝑡,𝑦𝑦) 

And if we neglect the effects of gravity:  𝑝𝑝 = 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 in all the system. 

The NS equation projected on x gives: 

0 = 𝜌𝜌
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝜇𝜇
𝜕𝜕2𝑣𝑣𝑥𝑥
𝜕𝜕𝑦𝑦2

  

𝝏𝝏𝒗𝒗𝒙𝒙
𝝏𝝏𝝏𝝏

= 𝝂𝝂 
𝝏𝝏𝟐𝟐𝒗𝒗𝒙𝒙
𝝏𝝏𝒚𝒚𝟐𝟐

 

Since 100 s is relatively short, we can start by making the semi-infinite approximation (to be 
checked later). 

 

Non-dimensionalization and solution (same as in lecture, for any exam you can just apply 
the solution we know already…  but just to see it again): 

We set: 



�
𝜙𝜙 =

𝑣𝑣𝑥𝑥
𝑣𝑣0

𝜂𝜂 =
𝑦𝑦

√4𝜈𝜈𝜈𝜈

 

Then: 

𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

= 𝑣𝑣0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

𝜕𝜕2𝑣𝑣𝑥𝑥
𝜕𝜕𝑦𝑦2

= 𝑣𝑣0
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

 

 

Next: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

∗
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝜂𝜂
2𝑡𝑡

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

∗
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
1

√4𝜈𝜈𝜈𝜈
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

⟹  
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

=
1

√4𝜈𝜈𝜈𝜈
𝑑𝑑2𝜙𝜙
𝑑𝑑𝜂𝜂2

∗
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
1

4𝜈𝜈𝜈𝜈
 
𝑑𝑑2𝜙𝜙
𝑑𝑑𝜂𝜂2

 

Therefore, the non-dimensional differential equation is: 

−
𝜂𝜂
2𝑡𝑡

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜈𝜈 ∗
1

4𝜈𝜈𝜈𝜈
 
𝑑𝑑2𝜙𝜙
𝑑𝑑𝜂𝜂2

 

𝒅𝒅𝟐𝟐𝝓𝝓
𝒅𝒅𝜼𝜼𝟐𝟐

+ 𝟐𝟐𝟐𝟐 
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

= 𝟎𝟎  

 

Integration of the differential equation 

We set  

𝜓𝜓 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

The equation becomes 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 2𝜂𝜂𝜂𝜂 = 0 

𝑑𝑑𝑑𝑑
𝜓𝜓

= −2𝜂𝜂 𝑑𝑑𝑑𝑑   

𝜓𝜓 (𝜂𝜂) = 𝐶𝐶1𝑒𝑒−𝜂𝜂
2 

i.e. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐶𝐶1𝑒𝑒−𝜂𝜂
2 



Therefore: 

𝜙𝜙 (𝜂𝜂) = 𝐶𝐶1 � 𝑒𝑒−𝜂𝜂′2𝑑𝑑𝑑𝑑′
𝜂𝜂

0
+ 𝐶𝐶2 

The boundary conditions are: 

(B. C. 1) 𝑣𝑣𝑥𝑥(0, 𝑡𝑡) = 𝑣𝑣0 ⟺  𝜙𝜙 (0) = 1 

(B. C. 2) 𝑣𝑣𝑥𝑥(∞, 𝑡𝑡) = 0 ⟺𝜙𝜙(∞) = 0 

 

B. C. 1 ⟹ 𝐶𝐶2 = 1 

B. C. 2 ⟹ 1 + 𝐶𝐶1 � 𝑒𝑒−𝜂𝜂′
2
𝑑𝑑𝜂𝜂′

∞

0
= 0 ⟹ C1 = −

2
√𝜋𝜋

  

Finally 

𝝓𝝓 (𝜼𝜼) = 𝟏𝟏 −
𝟐𝟐
√𝝅𝝅

� 𝒆𝒆−𝜼𝜼′
𝟐𝟐
𝒅𝒅𝜼𝜼′

𝜼𝜼

𝟎𝟎
= 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 (𝜼𝜼)  

The overall solution, using the semi-infinite model is therefore: 

𝒗𝒗𝒙𝒙(𝒚𝒚, 𝒕𝒕) = 𝒗𝒗𝟎𝟎 ∗ 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 �
𝒚𝒚

√𝟒𝟒𝟒𝟒𝟒𝟒
�  

 

a)  𝑦𝑦 = 1 𝑐𝑐𝑐𝑐 and 𝑡𝑡 = 100𝑠𝑠 

Then  

𝜂𝜂 =
0.01

√4 ∗ 10−6 ∗ 100
= 0.5 ⟹  erfc (𝜂𝜂) = 0.4795 

Therefore 

𝑣𝑣𝑥𝑥 (1 𝑐𝑐𝑐𝑐, 100𝑠𝑠) = 0.1 ∗ 0.4795 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 𝒎𝒎. 𝒔𝒔−𝟏𝟏 

 

b) We consider the fluid stagnant when  

𝜙𝜙 = 0.001 (arbitrary) 

0.001 = erfc (𝜂𝜂)  ⟹  𝜂𝜂 ≈ 2.35 

𝑦𝑦
√4𝜈𝜈𝜈𝜈

= 2.35 ⟺ 𝑦𝑦 = 2.35 ∗ �4 ∗ 10−6 ∗ 100 = 𝟒𝟒.𝟕𝟕𝟕𝟕 𝒄𝒄𝒄𝒄 

 

c)  we can consider that the semi-infinite approximation is valid for small Fo numbers: 



𝐹𝐹𝐹𝐹 =
𝜈𝜈𝜈𝜈
ℎ2

= 0.2      (arbitrary, 0.1 would be better) 

0.2 (0.06)2

10−6
= t ⟹  𝑡𝑡 = 720 𝑠𝑠𝑠𝑠𝑠𝑠 

The semi-infinite approximation is reasonable for the first 720 s after the plate is put in 
motion. 

d) The shear stress on the plate is homogenous over the plate, and therefore:

𝐹𝐹𝑇𝑇 = 𝐿𝐿𝐿𝐿 ∗ �−𝜇𝜇
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

�
𝑦𝑦=0

� 

𝐹𝐹𝑇𝑇 = −𝜇𝜇𝜇𝜇𝜇𝜇𝑣𝑣0
𝜕𝜕
𝜕𝜕𝜕𝜕

[erfc(𝜂𝜂)]�
𝑦𝑦=0

𝐹𝐹𝑇𝑇 = −𝜇𝜇𝜇𝜇𝜇𝜇𝑣𝑣0  �
𝜕𝜕
𝜕𝜕𝜕𝜕

[erfc(𝜂𝜂)] ∗
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑦𝑦=0

𝐹𝐹𝑇𝑇 = −𝜇𝜇𝜇𝜇𝜇𝜇𝑣𝑣0  �−
2
√𝜋𝜋

𝑒𝑒−𝜂𝜂2 ∗
1

√4𝜈𝜈𝜈𝜈
�
𝑦𝑦=0

𝑭𝑭𝑻𝑻(𝒕𝒕) =
𝝁𝝁𝝁𝝁𝝁𝝁𝒗𝒗𝟎𝟎
√𝝅𝝅𝝅𝝅𝝅𝝅

= 𝝆𝝆𝝆𝝆𝝆𝝆𝒗𝒗𝟎𝟎�
𝝂𝝂
𝝅𝝅𝝅𝝅

Therefore, at t=163s 

𝑭𝑭𝑻𝑻(𝟕𝟕𝟕𝟕𝟕𝟕 𝒔𝒔) = 𝟏𝟏𝟎𝟎𝟑𝟑 ∗ 𝟎𝟎.𝟏𝟏 ∗ 𝑳𝑳𝑳𝑳�
𝟏𝟏𝟎𝟎−𝟔𝟔

𝝅𝝅 ∗ 𝟕𝟕𝟕𝟕𝟕𝟕
= 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 𝑳𝑳𝑳𝑳 [𝑵𝑵] 




