Exercises Module 4

Corrections

Exercise 4.1

In this problem we expect the concentration ca to be a function of both rand 6, but not ¢ as
the geometry is rotationally symmetric around ¢. Therefore, we seek c4 (7, 8) over the domain
of the hemisphere.

The differential equation used will be Eq. 4.16 since we have no reaction and the continuum
is solid. Therefore:
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In spherical coordinates :
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Since c4 (7, 0) # f(¢) we can simplify:
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To solve this equation, we need 4 boundary conditions (2 for r and 2 for 8), and one initial
condition.

Initial condition: for t = 0 ¢, = 0 over the entire domain of the hemisphere
boundary conditions for t > 0:

atr = R,cy = cys (surface of hemisphere)
atf = g, C4 = C45 (bottom surface)

atr = 0,cy = ¢y, (thisis single point at the origin, which is on the surface)



The last boundary condition is a bit tricky. We have to look at the symmetry in the system. We
have an axis of symmetry when & = 0. The flux of A in the direction perpendicular to this
direction must be 0 at this axis, due to the symmetry (continuity) condition. Since at & = 0,
the theta direction, 8 (or ep) is indeed perpendicular to the axis of symmetry, which is exactly
what we need. Then we need only to write:

jA,9|9=0 =0
Applying Fick’s law of diffusion in 3D and taking only the theta component:
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This simplifies to:
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Note: at @ = 0, j4 # 0. This is because the r-component of the flux of A will not equal zero

. . aCA
(|.e.]A,r|9=0 # 0, or rather or loo #* 0).

Exercise 4.2

The system is isotropic in © and ¢, and therefore the temperature will only spatially depend
on the radius r:

T=T(rt)

There are two different continuous media in the system through which the temperature will
be transported: the bullet and the gel. Therefore, we need two differential equations to
describe it. Starting with equation 4.8, applying spherical coordinates, and simplifying for T =
T(r,t) we have:

Inside the bullet:

0Tpw _ abuli<r2 aTbul)
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Inside the gel:
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The initial conditions are:



Tbul(r <Rt< 0) = Ti
Tgei(r 2 R, t <0) =T,

We need four boundary conditions (two for each equation):
Tger (r & 0, t) =T,

Tbul (T =R, t) = Tgel(r =R, t)

aTb : 0T e
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Exercise 4.3

Under the stokes flow approximation we can assume that flow is only in the @ direction.
Then v, = v, = 0 and we seek vy (1, 2).

Flow is shear driven and pressure and gravity are ignored. Our simplified momentum
balance in cylindrical coordinates becomes:

0— d (10 o) | + 0%vy
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The boundary conditions are (choosing the origin of the coordinate system at the center of

the disk’s bottom, at the interface with the fluid, and the positive z direction toward the
ceramic shaft):

vo(r,z=0) = Qr
ve(r,z=0) =0
vg(r=0,z)=0

=20 =0 = (3 (2)

r

_ 9 (ve —
T 0- 67'(7') - 0 (free surface)

To solve this we need to make a reasonable guess for v, (7, z). Given the first B.C: above it is
reasonable to guess vy (1, z) = r f(2).

Plugging this into the differential balance and simplifying (few steps omitted) we get:



d2f

T
Simplifying the B.C.s we get
f(z=0)=0Q
flz=0=0

Integrating the differential balance and applying the B.C.s, and plugging back into vy gives:
z
ve(r,z) = Qr (1 —2>

b) the torque is given by:
TZ = sze|z=o7” dA
A

Plugging in for dA and the stress we get
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Finally giving:
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(c) We wanttofind Q, = quZ|Z=0 dA, thus first we look for T (1, z) in the liquid. Starting with
eq. 4.6:

= (kV2T) + ud
Steady state:

pc,(v-VT) = (kV?T) + ud,

Expand in cylindrical coordinates:
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Considering that T # f(0) and that v, = v, = 0 we have
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Further ignoring conduction in the r direction and expanding the term @, :
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Substituting vy (r,z) = Qr (1 - ?) we get:

°T _ u <rQ>2
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The B.C:sare:
T(r,z=0)=T,
o _
0zl,-¢

Integrating the differential equation once gives:

aT u(rQ
dz  k
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Here we can apply the second B.C. :
Thus:

Or rather:

Integrating again:

Apply first B.C.:

Then we have our T(r, 2)



Now we can derive q,|,-¢
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Exercise 4.4

We consider the wall as semi-infinite space, which surface is suddenly exposed to a drop in
temperature from T,= 40°C to T, = 20°C. The heat profile will evolve over time with the

following trend:

External External External
wall wall wall
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Since the heat propagates inside a solid, we can neglect the convection in front of the
conduction and therefore the heat differential equation becomes:

oT v2r
ot ¢
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The equation needs to be non-dimensionalized. We are dealing with the same equation than
in section 4.7 from the lecture, where the temperature replaces the speed and the thermal
diffusivity replaces the kinematic viscosity. The solving of the equation is therefore identical
as long as we can convert it to the same non-dimensional form.

We use the following non-dimensional variables:

T —-T, . X
= — e =
TO_Too N 4at
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Remark: In example in lecture, we had v, =0 so it did not appear in the non-
dimensionalization

The boundary conditions are:

x =0, T=T, = n=0 0=1
X = 00, T=T, > mn=o0, =0

Changing variables in the equation:

a0 %0
—_— = a—
ot dx?
Note that this is the same differential equation as we found for the velocity profile as in

lecture, for any exam you can just apply the solution we know already... however here is the
solution again (method of combination of variables):

Then:
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The new equation is:
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This yields:

Integrating ©® between 0 and 1 :

n
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On the other hand ©(o) = 0, therefore:

0= 1+le e 1 dn
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And therefore:
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For x; = 0.05mand t; = 900s,

T’l(xl, tl) = 118
Therefore

erfc(n,) = 0.095 (tabulated)
Finally:

T(x1,t1) = (T — Ts) erfc(ny) + Too = —20 * 0.095 + 40



T(x4.ty) =38.1°C

The semi-infinite approximation is satisfying as long as the Fo < 0.2 at the center of the wall.

Meaning that,

at
Fo=—<0.2

Yz —
then

Y2x0.2 (1m)?=0.2
t< =

= =4x10°
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The approximation is valid for any time lower than 4.6 days (this is a long time because a is
very small and therefore the heat propagates very slowly inside the wall)

Exercise 4.5

The fluid is moving in the x direction and since L, b > h, the speed will vary only in the y
direction:

v =1,(L,y)
And if we neglect the effects of gravity: p = pgem in all the system.
The NS equation projected on x gives:

0 0V, 0%v,
~Par ~ Hay2

v,  d*v,
at | ay?

Since 100 s is relatively short, we can start by making the semi-infinite approximation (to be
checked later).

Non-dimensionalization and solution (same as in lecture, for any exam you can just apply
the solution we know already... but just to see it again):

We set:
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Therefore, the non-dimensional differential equation is:
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Integration of the differential equation

We set
d¢
Y = I
n
The equation becomes
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Therefore:
¢ () =0C J-ne_nlzdn, + C;
0
The boundary conditions are:
(B.C.D) 1, (0,t) =vg &= ¢ (0)=1
(B.C.2) vy (00,t) =0 & ¢p(0) =0

B.C1=C,=1

[oe)
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Finally

2 (M 2
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The overall solution, using the semi-infinite model is therefore:

Yy
v, (y,t) =v *erfc( )

a) y=1cmandt = 100s

Then

0.01

= = 0.5 = erfc(n) = 0.4795
V4 %1076 % 100

n

Therefore

v, (1.¢cm,100s) = 0.1 % 0.4795 = 0.048 m.s™1

b) We consider the fluid stagnant when
¢ = 0.001 (arbitrary)
0.001 =erfc(n) = n = 2.35

y
Vavt

=235 oy= 2.35*\/4*10‘6*100 =4.70cm

c) we can consider that the semi-infinite approximation is valid for small Fo numbers:
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F0=ﬁ

= (0.2 (arbitrary, 0.1 would be better)

0.2 (0.06)2 o =720
- = = —
106 sec

The semi-infinite approximation is reasonable for the first 720 s after the plate is put in
motion.

d) The shear stress on the plate is homogenous over the plate, and therefore:

)
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Therefore, at t=163s

-6

— 103
Fr(720s) =10° 0.1+ Lb =720

=0.002 Lb [N]





